样本方差的公式为:
s²=(1/n)[(x1-x_)²+(x2-x_)²+...+(xn-x_)²]其中x_为样本均值。
先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。
样本方差用来表示一列数的变异程度。
样本均值又叫样本均数,即为样本的均值。
均值是指在一组数据中所有数据之和再除以数据的个数。
先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差
设m是平均值,n是样本数量则方差S^2=[(m-x1)^2+(m-x2)^2+……+(m-xn)^2]/n。
先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。
样本方差用来表示一列数的变异程度。
样本均值又叫样本均数。
即为样本的均值。
均值是指在一组数据中所有数据之和再除以数据的个数。
步骤/方式1
样本均值期望和样本均值方差推导:
E(X把)=E(1/n∑Xi)=1/nE(∑Xi)=1/n∑E(Xi)=(1/n)nμ=μ。
D(X把)=D(1/n∑Xi)=1/n²D(∑Xi)=1/n²∑D(Xi)=(1/n²)nσ²=σ²/n。
要算样本均值,必有样本。
X1,X2,...Xn是样本。
步骤/方式2
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
回答于2021-02-06
步骤/方式1
样本均值期望和样本均值方差推导:
E(X把)=E(1/n∑Xi)=1/nE(∑Xi)=1/n∑E(Xi)=(1/n)nμ=μ。
D(X把)=D(1/n∑Xi)=1/n²D(∑Xi)=1/n²∑D(Xi)=(1/n²)nσ²=σ²/n。
要算样本均值,必有样本。
X1,X2,...Xn是样本。
步骤/方式2
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
回答于2021-02-06
样本方差的计算公式为:s²=1/(n-1)[(x1-m)²+x2-m)²+...+xn-m)²],其中,n是该组数据的总个数,m是该组数据的平均值.比如,数据a,0,1,2,3的平均值为1,求它的样本方差?由题知,a=-1,则样本方差s²=1/(5-1)[(-1-1)²+(0-1)²+(1-1)²+(2-1)²+(3-1)²]=5/2.